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A novel QSAR approach based on quantum similarity measures was developed and tested in
this paper. This approach consists of replacing the usual physicochemical parameters employed
in QSAR analysis, such as octanol-water partition coefficient or Hammett σ constant, by
appropriate quantum chemical descriptors. The methodological basis for this substitution is
found in recent theoretical studies [J. Comput. Chem. 1998, 19, 1575-1583, J. Comput.-Aided
Mol. Des. 1999, 13, 259-270], in which it was demonstrated that both molecular hydrophobic
character and electronic substituent effect can be modeled by appropriately chosen quantum
self-similarity measures (QS-SM). The most important aim of this study was to prove that
selected QS-SM descriptors can be advantageously used in empirical QSAR analysis instead
of classical descriptors. For this purpose several QSAR correlations are proposed, in which
empirical descriptors such as Hammett σ constants or log P values are replaced by the
appropriate QS-SM. These examples involve: (i) a set of benzenesulfonamides which bind to
human carbonic anhydrase, (ii) a set of benzylamines as competitive inhibitors of the enzyme
trypsin, and (iii) a set of indole derivatives which are benzodiazepine receptor inverse agonist
site ligands. Simple linear QSAR models were developed in order to obtain mathematical
relationships between the biological activity and the pertinent quantum chemical descriptors.
The validity of the obtained QSAR models is supported by comparison of the observed and
predicted values of the biological activity and by a statistical analysis based on a randomization
test.

Introduction
In the past few years much effort has been devoted

to applying the idea of quantum similarity measures
(QSM) to rational drug design.1-15 Because of its
importance, this area of chemistry has experienced
rapid growth. The mathematical background for this
new expanding field was formulated some time ago by
Carbó et al.,16 who introduced the concept of QSM. Since
then, great progress has been made not only in basic
methodology but also in the formulation of robust
computational schemes.17-28 The basic idea of the above
similarity approach to QSAR is to replace the traditional
parameters in empirical QSAR analysis by selected
theoretical descriptors based on QSM.

In keeping with this general philosophy, the present
article reports an attempt to develop simple linear
QSAR models based on quantum mechanical descriptors
instead of empirical physicochemical parameters, char-
acterizing the molecular hydrophobicity and electronic
substituent effect in classical QSAR. The study is based
on previous reports which described how the quantum
self-similarity measure (QS-SM) of the whole molecule
could be used as a descriptor of molecular hydrophobic-
ity (log P).5,6 Similarly, the electronic substituent effect
may be appropriately modeled by fragment QS-SM
corresponding to a functional group (re)active in a given
process.6,7 The fact that electronic phenomena such as

the substituent effect can be replaced by means of QS-
SM attached to local molecular regions can be explained
through the recently reported holographic electron
density theorem.29 This theorem states that all the
information contained in the total electron density of
the whole molecule is also contained in the density of
any local fragment of the molecule. In consequence, the
QS-SM characterizing the functional group (re)active in
a given process can be used as an appropriate descriptor.

Several molecular sets were examined in this study:
(i) a series of benzenesulfonamides that show some
affinity to binding to the human carbonic anhydrase;
(ii) a series of benzylamine derivatives as competitive
inhibitors of the proteolytic enzyme trypsin; (iii) a set
of indole derivatives which are benzodiazepine receptor
inverse agonists. Indole derivatives are able to displace
[3H]flunitrazepam from binding to bovine cortical mem-
branes.

As will be shown, the theoretical QSAR models using
QSM descriptors show statistical reliability comparable
to descriptors derived from empirical correlations.30-32

Theoretical Framework

The idea of QSM arises from the incorporation of the
intuitive concept of molecular similarity into the frame-
work of quantum mechanics. According to this mechan-
ics, all the information concerning a quantum object
(QO) is contained in the associated electron density
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function obtained from the corresponding wave function
square module. From this point of view, electron density
can be regarded as an ultimate molecular descriptor.
In consequence, the similarity of any two QO can be
assessed quantitatively by comparing the similarity of
the corresponding electron density clouds.27

In this way, a consistent expression of QSM between
two QO A and B, described by the first-order density
functions {FA(r), FB(r)}, is defined by the integral

where Ω is a positive definite operator. The most
commonly used form of the two-electron operator Ω is
a Dirac δ function: Ω(r1,r2) ) δ(r1 - r2). By replacing
this operator into eq 1, a general definition of the so-
called overlap-like QSM is obtained:

The values of similarity measures ZAB defined by eq
2 depend on the relative translation and orientation of
the compared QO A and B in 3D space. This implies
that in order to get a meaningful and unique value of
QSM, the relative mutual position of both QO has to be
optimized so that a maximal value of the integral in eq
2 is reached.28 However, such optimization depending
of the relative position of both QO is no longer necessary
when A and B are identical. In this case, definition 2
yields an invariant quantum self-similarity measure
(QS-SM):

The fact that the relative position optimization be-
comes irrelevant for self-similarity measures is crucial
from a computational point of view, not only because of
substantial reduction of similarity integral measure
computation time, but also because it reduces the
conformational dependence of the results. As a conse-
quence, because the 3D alignment procedure is avoided,
QS-SM acquire special relevance as molecular descrip-
tors in building up quantum mechanical equivalents of
empirical QSAR Hansch-like models.

The procedure of generating these theoretical QSAR
models is as follows: First, the appropriate QS-SM are
computed for the whole series of compounds belonging
to the studied set. These self-similarity measures are
then arranged in the form of column vectors, z, entering
into linear regression analysis. But before this, each
column vector z is standardized so as to give new scaled
variables with zero mean and unit variance. The idea
underlying such statistical standardization is to ensure
comparable weights of individual molecular descriptors
in the final QSAR model. This standardization is
described in the usual way

where s and 〈z〉 are the standard deviation and the
arithmetic mean of the original descriptors, respectively.

A great number of methodologies and computational
algorithms have been developed for the practical imple-
mentation of QSM, which opens up the possibility of
their application in many areas of theoretical chemistry.

Among these techniques, the most widely used is what
is known as atomic shell approximation (ASA).24-26

Since this approximation is also employed for the
calculation of QS-SM in this study, we consider the basic
idea of the ASA approach worth re-stating.

ASA density functions are constructed as a linear
combination of spherical functions, with the restriction
that all coefficients of expansion have to be real and
positive. Thus, this constraint enables the statistical
meaning of a correct probability distribution to be
preserved. In addition, a promolecular model is em-
ployed, based on a plausible description of molecular
density functions as a sum of individual atomic contri-
butions. Then, the first-order density function under the
promolecular ASA form for a molecular QO A may be
expressed as

where the coefficient Pa represents the atom a total
charge, and FA

ASA(r) the density function. In the present
study, QS-SM were computed using weighting factors
Pa equal to total valence atomic charge on individual
atoms. Density for a given atom a is expressed as a
linear combination of square normalized 1S-type GTO

where the sum in eq 6 is performed over the functions
associated to the atomic shells. Within this promolecular
ASA model, only the coefficients wi and exponents úi are
needed to construct the density function. In this paper,
one function is used to modulate density on H atoms,
three functions are needed for C, O, and N atoms, and
four functions are needed for Cl atoms. Coefficients wi
and exponents úi used here can be downloaded from a
World Wide Web site.33

Simple Linear QSAR Models Using QS-SM

Around 1960, Hansch and co-workers34,35 introduced
a new approach which proved to be especially fruitful
in the field of rational drug design. Their approach was
based on the application of linear-free energy relation-
ships (LFER) to correlate biological activities with
appropriate physicochemical descriptors. Since then, the
application of what is known as QSAR became a
respectable and widely used methodology in pharmaco-
chemical research. A wealth of empirical descriptors
relating to various physicochemical properties was
introduced in consequence. The fundamental idea of the
Hansch approach consists of the design of suitable
QSAR models in the form of a multiple linear regression
(MLR) between physicochemical descriptors and biologi-
cal activities:

The most usual factors determining the biological
activity are the hydrophobic character, characterized by
log P values, and the substituent electronic and steric
effect represented by the Hammett and Taft constants.

ZAB(Ω) ) ∫∫FA(r1) Ω(r1, r2) FB(r2) dr1 dr2 (1)

ZAB ) ∫FA(r) FB(r) dr (2)

ZAA ) ∫|FA(r)|2 dr (3)

θ ) s-1(z - 〈z〉1) (4)

FA
ASA(r) ) ∑

a∈A

PaFa
ASA(r) (5)

Fa
ASA(r) ) ∑

i∈a

wi|Si(r - Ra; úi)|2 (6)

biological activity ) f(molecular or
fragmental contributions) ) f(log P, σ, Es) (7)
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On the basis of these parameters, the traditional drug
design consists of combining these molecular descriptors
in the form of an MLR so as to get the best statistical
description of the biological data.

In order to place the above empirical process on a
safer theoretical footing and so to provide a theoretical
interpretation of the origins of QSAR, a mathematical
formalism, based on the combination of the idea of
molecular similarity with quantum mechanical postu-
lates, has been proposed in a recent study.23 In the
following part, the basic idea of this rationalization will
be briefly explained.

According to quantum mechanics, any observable
property of a quantum system I, πI, for which the
density function FI(r) is known, can be calculated as the
expectation value of an associated hermitean operator
Ω(r)

Equation 8 represents a continuous description of an
observable property. However, such a continuous de-
scription is considerably different from the intrinsically
discrete form of empirical QSAR. A clue to the resolution
of this difference and to the theoretical formulation of
QSAR lies precisely in the application of the idea of
molecular similarity. For this purpose, given a set of
molecules (A, B, C, ... M) whose properties will be
studied, first pairwise QSM for all possible molecular
couples is calculated. These QSM can be conveniently
arranged in the form of a matrix Z ) {ZIJ}, which can
be considered as a hypermatrix formed by column
vectors as elements, Z ) {zI}. Using this symmetric
matrix, the molecular property πI can be approximated
according to the general equation

where a is an n-dimensional vector associated with the
discrete representation of the unknown operator Ω. This
equation represents the discrete counterpart of eq 8. The
unknown coefficients a, characterizing the operator Ω,
can be determined in a least-squares manner.

Although eq 9 represents the most general form of
theoretical QSAR models, in some cases the form of the
correlation equation can be further simplified. Such a
simplification is typical of a situation in which it is
possible to extract the QS-SM, ZII, from the rest of the
elements of the similarity matrix, {ZKI, K*I}, leading
to the result:

In some cases, particularly when homogeneous series
of QO are studied, the terms R ) aI and â ) ∑K*IaKZKI
can be considered as constants. Then, a simple linear
equation may be expressed by means of the QS-SM,
which represents the theoretical counterpart of the
simple one-parameter QSAR model, like the Hammett
equation:

The situation with the correlation of biological data
is, however, more complex since the final biological effect
is usually due to the combination of several different
factors. This suggests that in this case the theoretical
QSAR models should have the form of multilineal
correlation equations. Another important factor, which
plays an important role when correlating biological data,
is that the majority of the processes responsible for the
observed activity are usually restricted to certain more
or less localized regions of the molecule (pharmacophore,
binding site, etc). As a consequence, in some cases it is
possible and more useful to focus just on the comparison
of these active molecular regions, R. Under these
circumstances the original â constant in eq 11 can be
approximately rewritten in the form of a set of fragment
self-similarities. A justification of this procedure may
be obtained when inspecting the definition of â in eq 11
as follows

where {Zba
KI} are interatomic similarity contributions

involving molecules K and I to the global molecular
QSM, ZKI, when comparing molecular densities written
in the ASA approach as in eq 5. Reordering terms

and the symbol in the sum is defined as:

while the whole result can be further approximated
using the fact that B only depends explicitly on atomic
contributions of molecule I, that is,

where R are groups of atoms present in molecule I as
well as in the common skeleton shared by the rest of
the studied molecular set. To smooth the successive
approximation source of errors, the new coefficients, {RR,
γ} in eq 15 are to be adapted to a specific molecular
set, using a conventional fitting procedure.

Because â ≈ B, eq 15, when substituted in eq 11, can
be regarded as an alternative multilineal theoretical
QSAR model. In this equation, {ZI,RR} are the appropri-
ate self-similarity measures for each individual frag-
ment R contributing to the biological response. The
fragment self-similarities constitute a simple way to
take into account in some cases the variability of the
supposed constant â. Moreover they provide information
about the relevant parts of the common skeleton which
can be taken as responsible for biological activity.

The basic goal of the present article is to demonstrate
that in view of the analogy between empirical QSAR
and theoretical equations, the physicochemical descrip-
tors employed in classical QSAR studies can be replaced
by appropriate theoretical descriptors based on QS-SM.
In the following section some examples of such replace-
ment will be presented, with the aim of showing that

πI ) 〈ω〉 ) ∫Ω(r) FI(r) dr (8)

πI ≈ aTZI ) ∑
K

aKZKI (9)

πI ≈ aIZII + ∑
K*I

aKZKI (10)

πI ≈ RZII + â (11)

â ≈ ∑
K*I

aK∑
b∈K

∑
a∈I

Pb
KPa

IZba
KI (12)

â ≈ ∑
a∈I

Pa
I
ϑa

I ) B (13)

ϑa
I ) ∑

K*I

aK∑
b∈K

Pb
KZba

KI (14)

B ≈ ∑
R

RRZI,RR + γ (15)
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theoretical QSAR models can be used to correlate
biological data at least as successfully as the classical
QSAR models.

Results and Discussion

Having introduced the necessary theoretical back-
ground, its application to the construction of theoretical
QSAR models for the series of biologically active mol-
ecules studied will be reported in this section. These
molecular series involve three well-defined cases: (i)
benzenesulfonamides which show binding affinity with
human carbonic anhydrase (HCA); (ii) benzylamine
derivatives as competitive inhibitors of the proteolytic
enzyme trypsin; (iii) indole derivatives which are ben-
zodiazepine receptor inverse agonists.

1. Preliminary Considerations. Before presenting
the results, some general remarks concerning the
computation of QS-SM are summarized together with
the statistical aspects of the QSARs obtained:

•Molecular geometry of all involved molecules was
fully optimized using the AMPAC program36 and
semiempirical AM1 Hamiltonian.37

•The following QS-SM were calculated for each series
of molecules: (a) QS-SM for the whole molecule as an
alternative descriptor to log P;5 (b) the variation of the
electronic structure of the fragment presumably respon-
sible for the biological activity, induced by the system-
atic variation of substituents, was modeled by QS-SM
for appropriate molecular fragments.

•For the statistical analysis of the QSAR models, two
regression coefficients were calculated: conventional
squared regression coefficient (r2) and the cross-vali-
dated (CV) coefficient for prediction (q2). This latter
coefficient, which permits evaluation of the predictive
power of the model, is defined as q2 ) (1 - PRESS/SD),
where PRESS (predictive residual sum of squares) is
the sum of squared errors of predictions in a leave-one-
out (LOO) CV analysis, and SD is the squared sum of
the difference of the observed values from their mean.
A statistically reasonable QSAR model usually requires
the q2 value to be greater than 0.6.38

•Using a nested summation symbol (NSS) algo-
rithm,39,40 all possible combinations of the computed QS-
SM were generated and subsequently employed in
QSAR models. Using this approach, the corresponding
optimal QSAR model, in which a QS-SM set yields a
maximal value of the q2 coefficient, was chosen. In this
way, the study focused on determining which QS-SM
descriptors produced the linear regression model with
the best predictability.

•Finally, to verify that the results of the QSAR models
designed are not due to accidental correlations or to
over-parametrization of the model, a randomization
test41 was performed. This test consists of randomly
rearranging the order of the components of the vector
of biological activity data and correlating these rear-
ranged vectors with the vector of QS-SM. This procedure
was repeated 100 times for each chosen QS-SM set,
keeping the coefficients r2 and q2 for each random run
and recording all the obtained (r2, q2) pairs as points
on a graph at the end. A consistent QSAR model is

obtained when only the original arrangement of the
activities produces a satisfactory regression model.

2. Results. The first two examples presented in this
paper refer to QSAR studies of enzyme-ligand interac-
tions, and the third one deals with the prediction of the
ability of substituted indole derivatives to displace [3H]
flunitrazepam from binding to bovine cortical mem-
branes. The traditional approach to the description of
such biological activity data is based on the construction
of classical QSAR models using as descriptors hydro-
phobicity parameters (log P), Hammett substituent
constant, etc. As was explained earlier, the aim of this
study was to propose a new universal methodology,
based on the use of theoretical QS-SM based descriptors,
which could serve as an alternative procedure for
designing new QSAR models.

(a) Benzenesulfonamide Derivatives. A set of 29
substituted benzenesulfonamides, with a common struc-
ture shown in Chart 1 and substituents listed in Table
1, was studied as HCA inhibitors. Traditional studies
have shown that the HCA inhibitory activity of substi-
tuted benzenesulfonamides is predominantly influenced
by two basic factors: the hydrophobic interactions of
these molecules with enzyme-receptor cavity, and the
electronic structure of the active SO2NH2 group reflect-
ing the systematic variation of substituents within the
series. On the basis of these findings, Hansch proposed
empirical QSAR models30 using log P and Hammett’s
substituent constant σ as appropriate descriptors. For
the series of 19 para-substituted benzenesulfonamides

Chart 1. Common Molecular Structure for Substituted
Benzenesulfonamides

Table 1. Inhibitor Constants for the Binding of
X-C6H4SO2NH2 to HCA

X observed log Ka

1 H 6.69
2 4-CH3 7.09
3 4-C2H5 7.53
4 4-C3H7 7.77
5 4-C4H9 8.30
6 4-C5H11 8.86
7 4-CO2CH3 7.98
8 4-CO2C2H5 8.50
9 4-CO2C3H7 8.77

10 4-CO2C4H9 9.11
11 4-CO2C5H11 9.39
12 4-CO2C6H13 9.39
13 4-CONHCH3 7.08
14 4-CONHC2H5 7.53
15 4-CONHC3H7 8.08
16 4-CONHC4H9 8.49
17 4-CONHC5H11 8.75
18 4-CONHC6H13 8.88
19 4-CONHC7H15 8.93
20 3-CO2CH3 5.87
21 3-CO2C2H5 6.21
22 3-CO2C3H7 6.44
23 3-CO2C4H9 6.95
24 3-CO2C5H11 6.86
25 2-CO2CH3 4.41
26 2-CO2C2H5 4.80
27 2-CO2C3H7 5.28
28 2-CO2C4H9 5.76
29 2-CO2C5H11 6.18

a From ref 30.
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(1-19 in Table 1), the following correlation equation was
found:

The present approach to the design of alternative
theoretical QSAR models arises from previously re-
ported findings5-7 that, in a series of structurally related
molecules, both hydrophobic parameter log P and the
effect of the systematic substitution can be modeled by
appropriate theoretical descriptors. Such quantum simi-
larity descriptors have been chosen as the QS-SM θAA,
instead of log P, and the fragment QS-SM θΑΑ

R replac-
ing the substituent constant. Equation 17 is an example
of such replacement: it describes the correlation of
Hammett substituent constant with θΑΑ

SO2NH2 (listed in
Table 2) in a series of 19 para-substituted benzene-
sulfonamides. The correlation is fairly good.

A slightly more complex situation arises when con-
sidering the correlation of log P with θAA, which in the
same series splits into two regression lines with the
same slope and different intercepts, as is shown in
Figure 1. This specific form of correlation suggests that
all these data can be described by a single regression
line of the form: log P ) aθAA + bI + c, where the
variable I is the Boolean parameter, introduced to
distinguish between alkyl- and nonalkyl-substituted
derivatives (I ) 0 for molecules 1-6 and I ) 1 other-
wise). The existence of this splitting may suggest that

the basic assumption in deriving eq 11, namely the
requirement of constancy of the term â, is not appar-
ently satisfied within the whole series. It thus seems
quite plausible to regard this splitting as an indirect
indication of the fact that the studied molecular set
apparently does not form a homogeneous series and that
there are in fact two different series, formed by the
molecules 1-6 and 7-19. The actual form of the general
MLR equation is given by

Table 2. QS-SM (ZAA) and Scaled QS-SM (θAA) Used To Derive Eqs 17-19 and 22-24 for the Binding of X-C6H4SO2NH2 to HCAa

ZAA θAA ZAA
SO2NH2 θAA

SO2NH2 ZAA
SO2 θAA

SO2 ZAA
NH2 θAA

NH2 ZAA
m-C θAA

m-C

1 283.7310 -2.41624 189.7814 1.29909 151.9538 1.05833 37.8017 0.20978 15.0628 1.31094
2 298.9168 -2.13996 189.7945 1.56123 151.9679 1.29930 37.8008 0.15125 15.0831 1.44959
3 314.2117 -1.86171 189.7960 1.59287 151.9706 1.34686 37.7996 0.07627 15.0795 1.42482
4 329.5206 -1.58319 189.7943 1.55763 151.9689 1.31674 37.7996 0.07627 15.0860 1.46941
5 344.8184 -1.30488 189.7960 1.59231 151.9706 1.34650 37.7996 0.07544 15.0846 1.45950
6 360.1176 -1.02654 189.7960 1.59265 151.9706 1.34679 37.7996 0.07544 15.0853 1.46446
7 409.2965 -0.13184 189.6808 -0.72517 151.8467 -0.78089 37.8078 0.60322 14.6662 -1.39857
8 424.7788 0.14983 189.6858 -0.62495 151.8517 -0.69590 37.8079 0.60680 14.6690 -1.37903
9 440.0616 0.42787 189.6858 -0.62457 151.8516 -0.69606 37.8079 0.60782 14.6690 -1.37903

10 455.3495 0.70600 189.6857 -0.62594 151.8516 -0.69638 37.8079 0.60488 14.6697 -1.37414
11 470.6511 0.98438 189.6858 -0.62501 151.8517 -0.69568 37.8079 0.60571 14.6690 -1.37903
12 485.9479 1.26267 189.6857 -0.62582 151.8516 -0.69616 37.8079 0.60488 14.6690 -1.37903
13 391.2925 -0.45938 189.7171 0.00466 151.8892 -0.05090 37.8016 0.20620 14.9045 0.22969
14 406.7968 -0.17731 189.7189 0.04043 151.8909 -0.02171 37.8017 0.21252 14.9189 0.32820
15 422.0553 0.10028 189.7189 0.04081 151.8910 -0.02103 37.8017 0.21124 14.9204 0.33805
16 437.3506 0.37855 189.7188 0.04014 151.8910 -0.02113 37.8017 0.20933 14.9197 0.33312
17 452.6488 0.65687 189.7188 0.04039 151.8909 -0.02149 37.8017 0.21124 14.9197 0.33312
18 467.9466 0.93518 189.7188 0.04031 151.8909 -0.02140 37.8017 0.21124 14.9197 0.33312
19 483.2430 1.21346 189.7189 0.04083 151.8910 -0.02094 37.8017 0.21124 14.9197 0.33312
20 409.3961 -0.13003 189.6384 -1.57724 151.7981 -1.61525 37.8141 1.00305 14.9262 0.37747
21 424.8777 0.15163 189.6422 -1.50194 151.8031 -1.53016 37.8129 0.92608 14.9254 0.37254
22 440.1588 0.42964 189.6422 -1.50160 151.8031 -1.52985 37.8129 0.92608 14.9254 0.37254
23 455.4468 0.70777 189.6422 -1.50194 151.8031 -1.53020 37.8129 0.92608 14.9254 0.37254
24 470.7482 0.98615 189.6422 -1.50204 151.8031 -1.53018 37.8129 0.92608 14.9254 0.37254
25 409.2360 -0.13294 189.7274 0.21275 151.9359 0.75057 37.7646 -2.15843 14.7378 -0.90951
26 424.8852 0.15177 189.7396 0.45832 151.9468 0.93840 37.7658 -2.07770 14.7435 -0.87034
27 440.1338 0.42918 189.7381 0.42789 151.9453 0.91278 37.7658 -2.07936 14.7435 -0.87034
28 455.4154 0.70720 189.7381 0.42698 151.9453 0.91251 37.7658 -2.08140 14.7442 -0.86544
29 470.7187 0.98561 189.7401 0.46693 151.9473 0.94657 37.7658 -2.08127 14.7435 -0.87034

a Standardized values are obtained from eq 4.

log K ) 1.55σ + 0.65 log P + 6.93

n ) 19; r2 ) 0.943 (16)

σ ) -0.2779θΑΑ
SO2NH2 + 0.3160

n ) 19; r2 ) 0.966 (17)

Figure 1. Linear correlation between log P and θAA for a
series of 19 para-substituted benzenesulfonamides.

log P ) 1.9205θAA - 4.2624I + 4.8523

n ) 19; r2 ) 0.943; q2 ) 0.925 (18)
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Using such a unified correlation equation, the activity
of the whole set of 19 para-substituted benzenesulfona-
mides can be described by eq 19, which can be regarded
as a theoretical counterpart of the original empirical eq
16 given by Hansch:

Boolean variables were also used by Hansch when
extending the applicability of his QSAR model to ortho-
and meta-substituted benzenesulfonamides.30 The cor-
responding Hansch QSAR equations take the form

where two additional Boolean parameters indicating the
presence of meta- (Im) and ortho-substituents (Io) are
included. While keeping the Hansch results, the original
theoretical eq 19 can be generalized within the QS-SM
procedure for the set of 24 meta- and para-derivatives,
using the form

and for the whole set of 29 ortho-, meta-, and para-
substituted derivatives using

In addition to eqs 22 and 23, straightforwardly
derived from the Hansch empirical equations, an alter-
native theoretical equation, which does not rely on
mixing Boolean and real variables, can be proposed.
This alternative equation, found by using systematically
the NSS algorithm over the available QS-SM set, has
the form

This equation points out the splitting of the fragment
SO2NH2, expected to be responsible for the activity, into
two independent subfragments: SO2 and NH2. This
splitting could suggest that the SO2NH2 group binds to
the receptor site in the pocket of the enzyme in two
pointssby oxygen of the SO2 fragment and by hydrogen
bonding to the NH2 fragment. The existence of multi-
sites as responsible for the receptor/ligand binding has
been proposed in several hypothesized pharmacophore
models, for example, in the binding of indole derivatives

to benzodiazepine receptor. More detailed discussion of
this phenomenon, together with its possible conse-
quences for the construction of theoretical QSAR mod-
els, will be given in section c. As it will be shown there,
the systematic NSS procedure permits the localization
of individual interaction sites responsible for the bio-
logical activity in this particular case.

To verify the predictive power of the reported QSAR
model corresponding to eq 24, a correlation between
observed and predicted values of the inhibition constant
log K is shown in Figure 2. The predicted values are
computed employing a LOO CV analysis, yielding a q2

value of 0.976. Additionally, Figure 3 shows the results
for a random reordering test of the vector containing
HCA inhibition activities. As can be observed from this
illustration, the correct arrangement of the vector

log K ) 1.2511θAA - 0.4879θAA
SO2NH2 -

2.7968I + 10.6089

n ) 19; r2 ) 0.947; q2 ) 0.906 (19)

log K ) 1.55σ + 0.62 log P - 2.07Im + 6.98

n ) 24; r2 ) 0.964 (20)

log K ) 1.55σ + 0.64 log P - 2.07Im - 3.28Io + 6.94

n ) 29; r2 ) 0.982 (21)

log K ) 1.2175θAA - 0.4927θAA
SO2NH2 -

2.7321I - 2.6301Im + 10.5585

n ) 24; r2 ) 0.971; q2 ) 0.950 (22)

log K ) 1.2739θAA - 0.4536θAA
SO2NH2 -

2.7847I - 2.5796Im - 2.8896Io + 10.5957

n ) 29; r2 ) 0.984; q2 ) 0.973 (23)

log K ) 1.2000θAA + 2.3157θAA
SO2NH2 +

2.5149θAA
NH2 - 0.6264θAA

m-C + 7.4441

n ) 29; r2 ) 0.984; q2 ) 0.976 (24)

Figure 2. Observed versus predicted log K values for benze-
nesulfonamide compounds obtained from a LOO CV analysis.

Figure 3. Representation of the r2 vs q2 statistical coefficients
obtained from a random reordering test for the set of 29
benzenesulfonamides. Real (b) and random (+) QSAR models.
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containing activity values, which is depicted with a filled
circle, corresponds to the best QSAR model.

In fact, to conclude this first example, it can be said
that a satisfactory correlation between QS-SM and the
binding constant K to HCA for this set of 29 benzene-
sulfonamides was found by means of eq 24. Results from
these studies are comparable with those in a previous
classical QSAR study. However, it must be stressed that
in the present QS-SM model, which uses the same
number of variables as the Hansch model, no mixing
between Boolean and real variables is needed; in addi-
tion, the role of a pharmacophore position can easily be
guessed, and the search for best fragment similarities
is fully automated.

(b) Benzylamine Derivatives. In this example, the
QSM theoretical approach was used to study the action
of 22 benzylamine derivatives (Chart 2) as competitive
inhibitors of the proteolytic enzyme trypsin. The activity
of these derivatives was studied by Markwardt et al.,42

and the corresponding data are summarized in Table
3. The biological activity of this series of substituted
benzylamines was quantitatively studied by Hansch,31

who reported the existence of empirical correlation with
log P and Hammett σ constants as descriptors of a
subset of nine molecules (8-17 except phenyl derivative
14):

Such a form of empirical QSAR suggests again
constructing the alternative theoretical QS-SM model
in such a way that both traditional descriptors are
replaced by their corresponding theoretical counterparts
θAA and θAA

CH2NH2, respectively, listed in Table 4. Using

this replacement, the initial empirical equation can be
rewritten in the form

which has a statistical importance similar to eq 25.
The ability to reproduce alternatively the traditional

QSAR models is interesting, but certainly not the most
important result of the present QS-SM approach. Its
main advantage over traditional approaches is that the
required theoretical QS-SM descriptors can be calcu-
lated easily. This is also true in situations where the
traditional descriptors are either difficult to determine
or completely unknown (for example, σ constants for
some special substituents). Such is the situation with
the whole series of 22 substituted benzylamines, where
the lack of traditional descriptors restricted Hansch to
studying only the subset of nine substituted derivatives.
This limitation does not exist for the present theoretical
approach and, in fact, a fairly good QSAR model
describing the activity of the series of 21 derivatives has
been found. It should be noted that the strongly deviat-
ing point 14 was excluded from the model, as it was by
Hansch.31 The resulting QSAR model takes the form of
three-parameter correlation, with an additional descrip-
tor, the fragment QS-SM θAA

C6H4:

The reason for the presence of this additional param-
eter is not yet completely clear. However, a plausible
explanation could be proposed invoking possible specific
interactions of the benzene ring with the enzyme cavity,
which can become important in determining inhibition
activity. This equation enables the experimental values
of biological activity to be confronted with LOO CV
values, as shown in Figure 4.

Figure 5 shows the results for the random reordering
test performed over the set of 21 molecules in order to
reject accidental correlation. As can be seen in this
figure, the best model, with the highest values of r2 and
q2, does indeed correspond to the correct arrangement
of log 1/Ki values, so that accidental correlation can be
excluded.

(c) Indole Derivatives. In this last example, a
quantitative study of the relationships between the
structure of a group of indole derivatives and their
capacity to displace [3H] flunitrazepam from binding to
bovine cortical membranes is presented. Molecular
structures and experimental biological activity43 for a
set of 23 N-(indol-3-ylglyoxylyl)benzylamine derivatives
(Chart 3) are listed in Table 5. These data were analyzed
using the traditional QSAR approach,32 providing some
linear correlations with the main result that the biologi-
cal activity for this molecular set does not depend on
the hydrophobic parameter log P. In view of this, the
decisive role in influencing biological activity in this
series of substituted indole derivatives is presumably
to be played by the substituent-induced variation in
electronic structure of the active fragment, whose

Chart 2. Common Molecular Structure for Benzylamine
Derivatives

Table 3. Inhibitor Constants for the Binding of
X-C6H4CH2NH2 to the Enzyme Trypsin

X observed log 1/Ki
a

1 H 0.523
2 CH3 -0.176
3 Cl 0.155
4 OCH3 0
5 OCH2C5H6 0.398
6 NH2 0.301
7 COOH -0.301
8 COOCH3 -0.362
9 COOCH2CH3 -0.447

10 COO(CH2)2CH3 -0.301
11 COO(CH2)3CH3 -0.041
12 COO(CH2)4CH3 0.155
13 COO(CH2)5CH3 0.523
14 COOCH2-C6H5 1.523
15 COOCH2-p-C6H4Cl 1.523
16 COO(CH2)2C6H5 0.222
17 COO(CH2)3C6H5 0.301
18 CONH2 -0.398
19 CONHC6H5 0.699
20 CONHCH2C6H5 0.398
21 CONH(CH2)2C6H5 0.523
22 CONHC10H7 (naphthalene) 1
a From ref 42.

log 1/Ki ) 0.41 log P - 0.45σ - 1.07

n ) 9; r2 ) 0.955 (25)

log 1/Ki ) 0.6685θAA - 3.7872θAA
SO2NH2 + 2.6124

n ) 9; r2 ) 0.964; q2 ) 0.901 (26)

log 1/Ki ) 0.5572θAA - 0.2608θAA
CH2NH2 +

0.2771θAA
C6H4 + 0.2220

n ) 21; r2 ) 0.828; q2 ) 0.689 (27)
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structure is not known. In keeping with this expectation,
Hadjipavlou-Litina and Hansch proposed the correlation
of the biological activity for a set of 20 derivatives (points
2, 13, and 14 were excluded) with the Hammett sub-
stituent constant σ of the substituent R:32

This correlation is not very satisfactory, but the
graphical form of this dependence, shown in Figure 6,
suggests that the description of the activity of the indole
derivatives could be improved by adding two Boolean
variables, I2 and I3, as was proposed by Hadjipavlou-
Litina and Hansch:32

In this equation, σ is related to the substituent R,
Boolean variable I2 is defined as 1 when both R1 and
R2 are the CH3O group and as 0 otherwise, while I3 )
1 for the cases R2 ) OH/R1 ) H and 0 otherwise.

Although eq 29 provides a reasonable description of
the biological data, it is not completely satisfactory from
a theoretical point of view. Namely, it is clear that,

Table 4. QS-SM (ZAA) and Scaled QS-SM (θAA) Used To Derive Eqs 26 and 27 for the Binding of X-C6H4CH2NH2 to the Enzyme
Trypsina

ZAA θAA ZAA
CH2NH2 θAA

CH2NH2 ZAA
C6H4 θAA

C6H4

1 134.9215 -1.87870 44.9282 -0.59640 89.8533 3.35123
2 149.9472 -1.70216 44.9221 -0.90111 89.4114 1.45386
3 301.8829 0.08296 44.9265 -0.68188 89.1607 0.37739
4 197.2198 -1.14674 44.8990 -2.03526 88.8875 -0.79540
5 286.0141 -0.10348 44.8990 -2.03561 88.8637 -0.89796
6 164.5553 -1.53053 44.8916 -2.40006 89.1915 0.50949
7 246.9712 -0.56221 44.9583 0.88469 88.8978 -0.75155
8 260.8403 -0.39925 44.9559 0.76648 88.9174 -0.66717
9 276.3086 -0.21751 44.9553 0.73528 88.9282 -0.62070

10 291.5922 -0.03795 44.9554 0.73765 88.9283 -0.62062
11 306.8786 0.14166 44.9553 0.73563 88.9283 -0.62057
12 322.1767 0.32140 44.9542 0.68066 88.9276 -0.62353
13 337.4751 0.50114 44.9542 0.68066 88.9275 -0.62366
14 349.6811 0.64455 44.9563 0.78464 88.9144 -0.67993
15 516.6186 2.60593 44.9558 0.75723 88.9015 -0.73549
16 365.1546 0.82635 44.9560 0.76939 88.9268 -0.62683
17 380.4667 1.00626 44.9560 0.76796 88.9245 -0.63660
18 228.6429 -0.77755 44.9422 0.09151 89.2038 0.56246
19 315.9116 0.24779 44.9416 0.05874 89.2277 0.66494
20 331.6791 0.43304 44.9425 0.10554 89.2149 0.61030
21 347.0398 0.61352 44.9411 0.03719 89.2330 0.68766
22 374.1008 0.93147 44.9415 0.05707 89.2318 0.68267

a Standardized values are obtained from eq 4.

Figure 4. Observed versus predicted log 1/Ki values for
benzylamine compounds obtained from a LOO CV analysis.

Figure 5. Representation of the r2 vs q2 statistical coefficients
obtained from a random reordering test for the set of 21
benzylamines. Real (b) and random (+) QSAR models.

Chart 3. Common Molecular Structure for Indole
Derivatives

log 1/Ki ) 1.00σ + 6.60

n ) 20; r2 ) 0.498 (28)

log 1/Ki ) 1.01σ + 0.60I2 - 0.40I3 + 6.56

n ) 20; r2 ) 0.810 (29)

5176 Journal of Medicinal Chemistry, 1999, Vol. 42, No. 25 Amat et al.



whatever the biologically active fragment may be, its
structure will certainly be affected by the cumulative
effect of all substituents (R, R1, and R2). Thus, it would
be much more realistic to seek the QSAR model in the
form of a linear combination of σ constants for all
substituents, rather than focusing on the effect of the
single isolated substituent R. In analyzing such possible
equations, an excellent correlation was found between
the linear combination of σ constants of substituents R,
R1, and R2 and the fragment QS-SM θAA

COCONHCH2

which indicates that the biological activity of these

molecules could be due to the presence of the COCON-
HCH2 fragment. But the correlation of experimental
activity with this selected theoretical descriptor is not
very satisfactory:

This result shows that the problem of determining the
fragment responsible for biological activity is more
complex. A solution to this problem seems to be offered
by a recent study,44 in which a mechanism of benzodi-
azepine receptor (BzR) activity was proposed. According
to this study, the biological activity of BzR ligands relies
on the presence of four interaction sites: (i) a hydrogen
bond acceptor site (A2), (ii) a hydrogen bond donor site
(H1), (iii) a “bifunctional” hydrogen bond donor/acceptor
site (H2/A3), and (iv) three lipophilic pockets (L1, L2, and
L3). In particular, for the series of N-(indol-3-ylglyoxy-
lyl)benzylamine derivatives, these (re)active sites were
identified as43 follows: A2 ) NH indole group, H1 ) Cd
O2 group, H2 ) CdO1 group, L1 ) CH2 group, and L2 )
phenyl ring. All these crucial molecular fragments are
depicted in Chart 3. It is worth mentioning that three
of these sites are also present in the COCONHCH2
fragment.

According to the previously described pharmacophore
model, five QS-SM fragments were selected and tested
as possible molecular descriptors for modeling the action
of indole derivatives to the BzR: θAA

NH(A2) ) QS-SM for
the indole group NH, θAA

CdO2(H1) ) QS-SM for the group
CdO2, θAA

CdO1(H2) ) QS-SM for the group CdO1,
θAA

CH2(L1) ) QS-SM for the group CH2, and θAA
Ph(L2) )

QS-SM for the phenyl ring plus R1, R2, and R3 substit-
uents.

The corresponding QS-SM are listed in Table 6. On
the basis of the above list, the theoretical QSAR model
was searched for in the form of a linear combination of
theoretical descriptors corresponding to individual in-
teraction sites which give the best statistical description

Table 5. Benzodiazepine Receptor Affinity of Indole
Derivatives

R R1 R2 R3 observed log 1/Ki
a

1 H H H H 6.92
2 Cl H H H 6.31
3 NO2 H H H 6.93
4 H OCH3 H H 6.79
5 Cl OCH3 H H 6.97
6 NO2 OCH3 H H 7.28
7 H H OCH3 H 6.54
8 Cl H OCH3 H 6.79
9 NO2 H OCH3 H 7.42

10 H OCH3 OCH3 H 7.03
11 Cl OCH3 OCH3 H 7.52
12 NO2 OCH3 OCH3 H 7.96
13 H Cl H H 7.17
14 H H H Cl 5.59
15 H OH H H 6.37
16 Cl OH H H 6.82
17 NO2 OH H H 7.92
18 H H OH H 6.09
19 Cl H OH H 6.24
20 NO2 H OH H 7.19
21 H OH OH H 6.46
22 Cl OH OH H 6.74
23 NO2 OH OH H 7.32

a From ref 43.

Figure 6. Dependence of Hammett constant σ for a series of
indole derivatives on observed log 1/Ki values.

θAA
COCONHCH2) -3.0455σp(R) - 0.1714σp(R1) -

0.5838σm(R2) + 0.9458

n ) 23; r2 ) 0.991; q2 ) 0.987 (30)

Figure 7. Observed versus predicted log 1/Ki values for indole
derivatives obtained from a LOO CV analysi.

log 1/Ki ) - 0.3900θAA
COCONHCH2 + 6.8856

n ) 23; r2 ) 0.491; q2 ) 0.393 (31)
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of the data. Such a search can best be performed by
means of the NSS algorithm. With this approach, the
following QSAR models were obtained for a set of 20
compounds, where molecules 1, 13, and 14 are rejected:

Not only do these equations provide a better statisti-
cal description of the biological activity than the original
Hansch equation (eq 29) but also the physical meaning
of individual descriptors is clearer than that for the
Boolean variables I2 and I3. In addition, eq 33 suggests

that the importance of potential interaction sites in
determining biological activity is not the same for all
fragments. The interactions for the hydrogen bond
donator sites H1, H2, and L2 probably dominate the rest.
In conclusion, the presented theoretical procedure not
only provides a satisfactory statistical description of the
biological activities but also permits the localization and
identification of the possible reaction sites responsible
for the biological activity in a given series of compounds.
Consequently, the reported theoretical approach can be
a reasonable and reliable alternative to classical QSAR
approaches.

The predictive q2 value obtained from a LOO CV
analysis in eq 33 is satisfactory. This assertion is
confirmed by the representation of predicted and ob-
served values of log 1/Ki for the set of 20 indole
derivatives, shown in Figure 7.

Finally, an independent validation study of QSAR
model33 was carried out with the aim of predicting the
activity for a new subset of compounds which were not
considered in the construction of the model. In reference
43, the activities of six new indole derivatives (listed in
Table 7) with the same common skeleton given in Chart
3 where reported. Fragment QS-SM for these com-
pounds are listed in Table 8. Using eq 33, the theoretical
values of log 1/Ki were calculated which are also
presented in Table 7. As can be seen, most of the
predictions are correct. The only deviation concerns the
molecule 25, which has a fluorine atom as a substituent.
However, when predicted and observed values for the

Table 6. QS-SM (ZAA) and Scaled QS-SM (θAA) Used To Derive Eqs 30-33 for the BzR Affinity of Indole Derivatives

ZAA
COCONHCH2 θAA

COCONHCH2 ZAA
NH θAA

NH a ZAA
CdO2 θAA

CdO2 a ZAA
CdO1 θAA

CdO1 a ZAA
CH2 θAA

CH2 a ZAA
Ph θAA

Ph a

1 169.8903 0.88904 28.7523 1.32205 63.3717 0.42105 61.8345 0.55964 14.0570 0.72942 89.7885 -1.75575
2 169.8128 0.19186 28.7319 -1.21936 63.3677 0.20432 61.7738 -0.11068 14.0590 0.84100 89.7804 -1.75593
3 169.6365 -1.39478 28.7407 -0.12213 63.3725 0.46295 61.6323 -1.67314 14.0650 1.17221 89.7585 -1.75641
4 169.8982 0.96021 28.7523 1.32005 63.3928 1.57312 61.8559 0.79688 14.0155 -1.55821 152.1434 -0.37822
5 169.8338 0.38107 28.7330 -1.07917 63.3970 1.80317 61.8034 0.21634 14.0189 -1.37179 152.1318 -0.37847
6 169.6342 -1.41534 28.7407 -0.12238 63.3876 1.28778 61.6547 -1.42621 14.0243 -1.07726 152.1108 -0.37894
7 169.8915 0.90029 28.7523 1.32043 63.3677 0.20416 61.8301 0.51089 14.0621 1.01270 152.1492 -0.37809
8 169.8245 0.29744 28.7330 -1.08104 63.3720 0.43580 61.7744 -0.10384 14.0648 1.15974 152.1419 -0.37825
9 169.6223 -1.52232 28.7407 -0.12325 63.3590 -0.27081 61.6264 -1.73895 14.0750 1.72239 152.1219 -0.37869

10 169.8694 0.70160 28.7523 1.32255 63.3749 0.59325 61.8392 0.61172 14.0272 -0.91306 213.7586 0.98298
11 169.7975 0.05443 28.7330 -1.07854 63.3741 0.54976 61.7832 -0.00648 14.0292 -0.80324 213.7489 0.98277
12 169.6082 -1.64916 28.7407 -0.12362 63.3719 0.43165 61.6377 -1.61417 14.0366 -0.39542 213.7180 0.98208
13 169.8838 0.83044 28.7433 0.20721 63.3219 -2.29971 61.8627 0.87116 14.0551 0.62545 256.7471 1.93268
14 169.9046 1.01837 28.7522 1.31568 63.3489 -0.82597 61.9016 1.30078 14.0599 0.88910 257.1127 1.94075
15 169.9007 0.98283 28.7500 1.03828 63.3813 0.94529 61.8694 0.94556 14.0196 -1.33638 138.1157 -0.68811
16 169.8339 0.38151 28.7308 -1.35969 63.3840 1.09236 61.8134 0.32730 14.0209 -1.26456 138.1048 -0.68836
17 169.6404 -1.35953 28.7385 -0.40240 63.3780 0.76457 61.6653 -1.30869 14.0248 -1.04521 138.0710 -0.68910
18 169.8903 0.88955 28.7500 1.04415 63.3540 -0.54369 61.8386 0.60486 14.0662 1.23641 138.1384 -0.68761
19 169.8191 0.24885 28.7308 -1.35881 63.3551 -0.48802 61.7804 -0.03794 14.0682 1.34496 138.1280 -0.68784
20 169.6321 -1.43456 28.7384 -0.40365 63.3513 -0.69142 61.6364 -1.62845 14.0756 1.75498 138.1006 -0.68845
21 169.9051 1.02277 28.7478 0.76201 63.3627 -0.07107 61.8726 0.98134 14.0350 -0.48704 186.5875 0.38272
22 169.8369 0.40908 28.7286 -1.63746 63.3647 0.03835 61.8159 0.35504 14.0363 -0.41506 186.5741 0.38242
23 169.6377 -1.38365 28.7362 -0.68279 63.3521 -0.65142 61.6685 -1.27304 14.0416 -0.11827 186.5384 0.38163

a Standardized similarity measure values are obtained from eq 4 and have been calculated together with QS-SM of molecules listed in
Table 7.

Table 7. Benzodiazepine Receptor Affinity of Indole
Derivatives

R R1 R2 R3

observed
log 1/Ki

a
predicted
log 1/Ki

b

24 H H Cl H 6.80 6.52
25 H F H H 7.28 5.82
26 H H H F 6.18 5.77
27 H OH OCH3 H 6.85 6.74
28 Cl OH OCH3 H 7.57 7.04
29 NO2 OH OCH3 H 7.89 7.67

a From ref 43. b Calculated from eq 33 using scaled QS-SM
described in Table 8.

Table 8. Benzodiazepine Receptor Affinity of Indole Derivatives

ZAA
NH θAA

NH a ZAA
CdO2 θAA

CdO2 a ZAA
CdO1 θAA

CdO1 a ZAA
CH2 θAA

CH2 a ZAA
Ph θAA

Ph a

24 28.7433 0.20521 63.3266 -2.04092 61.8707 0.95939 14.0535 0.43682 256.8588 1.93514
25 28.7433 0.20209 63.3308 -1.81120 61.8700 0.95187 14.0378 -0.32852 162.4339 -0.15088
26 28.7533 1.45239 63.3359 -1.53684 61.8946 1.22355 14.0377 -0.33514 162.5210 -0.14895
27 28.7500 1.04265 63.3682 0.22929 61.8610 0.85266 14.0309 -0.71003 200.4366 0.68867
28 28.7308 -1.35657 63.3693 0.28769 61.8043 0.22669 14.0329 -0.60049 200.4240 0.68839
29 28.7384 -0.40390 63.3623 -0.09347 61.6594 -1.37409 14.0390 -0.26553 200.3974 0.68781

a Standardized similarity measures values are obtained from eq 4 and have been calculated together with QS-SM of molecules listed
in Table 5.

log 1/Ki ) -0.4086θAA
CdO1 + 0.3541θAA

Ph + 6.9237

n ) 20; r2 ) 0.751; q2 ) 0.683 (32)

log 1/Ki ) 0.2767θAA
CdO2 - 0.4573θAA

CdO1 +

0.3697θAA
Ph + 6.8085

n ) 20; r2 ) 0.751; q2 ) 0.683 (33)
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rest of the five compounds are analyzed, a squared
regression coefficient of 0.945 is obtained.

As in previous examples, a randomization test was
carried out to estimate statistical reliability of the QSAR
model given in eq 33. This validation test is presented
in Figure 8. As can be seen, only the correct arrange-
ment of biological data provides a satisfactory QSAR
model.

Conclusions

The examples put forward here clearly show that QS-
SM for the whole molecule and the appropriate molec-
ular fragments can advantageously be used as efficient
descriptors for predicting biological and pharmacological
activities. We can thus believe that because of its
relative simplicity and complete generality the method
opens a new interesting possibility to enrich the tradi-
tional QSAR approaches by describing a systematic
procedure of constructing new theoretical QSAR models.
Moreover, the possibility of identification of individual
interaction sites responsible in each particular case for
the observed biological activity could also be of consider-
able importance for the rational design of new biologi-
cally active molecules.
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Quantum Similarity Measures Tuned 3D QSAR: An Antitu-
moral Family Validation Study. J. Chem. Inf. Comput. Sci. 1998,
38, 624-631.
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(7) Ponec, R.; Amat, L.; Carbó-Dorca, R. Quantum Similarity
Approach to LFER: Substituent and Solvent Effects on the
Acidities of Carboxylic Acids. J. Phys. Org. Chem. 1999, 12, 447-
454.

(8) Good, A. C.; Hodgkin, E. E.; Richards, W. G. Similarity screening
of molecular data sets. J. Comput.-Aided Mol. Des. 1992, 6, 513-
520.

(9) Good, A. C.; So, S.-S.; Richards, W. G. Structure-activity
relationships from molecular similarity matrices. J. Med. Chem.
1993, 36, 433-438.

(10) Good, A. C.; Peterson, S. J.; Richards, W. G. QSAR’s from
similarity matrices. Technique validation and application in the
comparison of different similarity evaluation methods. J. Med.
Chem. 1993, 36, 2929-2937.

(11) Cooper, D. L.; Allan, N. L. A novel approach to molecular
similarity. J. Comput.-Aided Mol. Des. 1989, 3, 253-259.

(12) Measures, P. T.; Mort, K. A.; Allan, N. L.; Cooper, D. L.
Applications of momentum-space similarity. J. Comput.-Aided
Mol. Des. 1995, 9, 331-340.

(13) Benigni, R.; Cotta-Ramusino, M.; Giorgi, F.; Gallo, G. Molecular
similarity matrixes and quantitative structure-activity relation-
ships: a case study with methodological implications. J. Med.
Chem. 1995, 38, 629-635.

(14) Mestres, J.; Rohrer, D. C.; Maggiora, G. M. A molecular field-
based similarity approach to pharmacophoric pattern recogni-
tion. J. Mol. Graphics Modelling 1997, 15, 114-121.

(15) Mestres, J.; Rohrer, D. C.; Maggiora, G. M. A molecular-field-
based similarity study of nonnucleoside HIV-1 reverse tran-
scriptase inhibitors. J. Comput. Aided-Mol. Des. 1999, 13, 79-
93.
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(18) Carbó, R.; Calabuig, B. Quantum molecular similarity measures
and the n-dimensional representation of a molecular set: phe-
nyldimethylthiazines. J. Mol. Struct. (THEOCHEM) 1992, 254,
517-531.
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Similarity: Theoretical Framework, Ordering Principles, and
Visualization Techniques. Adv. Quantum Chem. 1994, 25, 253-
313.
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(39) Carbó, R.; Besalú, E. Definition, mathematical examples an
quantum chemical applications of nested summation symbols
and logical Kronecker deltas. Comput. Chem. 1994, 18, 117-
126.

(40) Carbó, R.; Besalú, E. Definition and quantum chemical applica-
tions of nested summations symbols and logical functions:
Pedagogical artificial intelligence devices for formulae writing,
sequential programming and automatic parallel implementation.
J. Math. Chem. 1995, 18, 37-72.

(41) Wold, S.; Eriksson, L. Statistical Validation of QSAR Results.
In: Chemometric Methods in Molecular Design; van de Water-
beemd, H., Ed.; VCH Publishers Inc.: Weinheim, 1995; Vol. 2;
pp 309-318.

(42) Markwart, F.; Landmann, H.; Walsmann, P. Comparative
Studies on the Inhibition of Trypsin, Plasmin, and Thrombin
by Derivatives of Benzylamine and Benzamidine. Eur. J. Bio-
chem. 1968, 6, 502-506.

(43) Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Marini, A. M.;
Novellino, E.; Greco, G.; Martini, C.; Giannaccini, G.; Lucacchini,
A. Synthesis, Structure-Activity Relationships, and Molecular
Modeling Studies of N-(Indole-3-ylglyoxylyl)benzylamine Deriva-
tives Acting at the Benzodiazepine Receptor. J. Med. Chem.
1996, 39, 5083-5091.

(44) Zhang, W.; Koehler, K. F.; Zhang, P.; Cook, J. M. Development
of a Comprehensive Pharmacophore Model for the Benzodiaz-
epine Receptor. Drug Des. Discovery 1995, 12, 193-248.

JM9910728

5180 Journal of Medicinal Chemistry, 1999, Vol. 42, No. 25 Amat et al.


